Wikipedia answer:
It's a combination of camphor and nitrocellulose.
Camphor (/ˈkæmfər/) is a waxy, colorless solid with a strong aroma.[5] It is classified as a terpenoid and a cyclic ketone. It is found in the wood of the camphor laurel (Cinnamomum camphora), a large evergreen tree found in East Asia; and in the kapur tree (Dryobalanops sp.), a tall timber tree from South East Asia. It also occurs in some other related trees in the laurel family, notably Ocotea usambarensis. Rosemary leaves (Rosmarinus officinalis) contain 0.05 to 0.5% camphor,[6] while camphorweed (Heterotheca) contains some 5%.[7] A major source of camphor in Asia is camphor basil (the parent of African blue basil). Camphor can also be synthetically produced from oil of turpentine.
Nitrocellulose (also known as cellulose nitrate, flash paper, flash cotton, guncotton, pyroxylin and flash string, depending on form) is a highly flammable compound formed by nitrating cellulose through exposure to a mixture of nitric acid and sulfuric acid. One of its first major uses was as guncotton, a replacement for gunpowder as propellant in firearms. It was also used to replace gunpowder as a low-order explosive in mining and other applications. In the form of collodion it was also a critical component in an early photographic emulsion, the use of which revolutionized photography in the 1860s. In the 20th century it was adapted to automobile lacquer and adhesives.
Cellulose for industrial use is mainly obtained from wood pulp and from cotton.
Industrial nitric acid production uses the Ostwald process. The combined Ostwald and Haber processes are extremely efficient, requiring only air and natural gas feedstocks.[35]
The Ostwald process' technical innovation is the proper conditions under which anhydrous ammonia burns to nitric oxide (NO) instead of dinitrogen (N2).[35][36] The nitric oxide is then oxidized, often with atmospheric oxygen, to nitrogen dioxide (NO2):
2 NO + O2 → 2 NO2
The dioxide then disproportionates in water to nitric acid and the nitric oxide feedstock:
3 NO2 + H2O → 2 HNO3 + NO
The net reaction is maximal oxidation of ammonia:
NH3 + 2 O2 → HNO3 + H2O
Dissolved nitrogen oxides are either stripped (in the case of white fuming nitric acid) or remain in solution to form red fuming nitric acid.
Sulfuric acid is produced from sulfur, oxygen and water via the conventional contact process (DCDA) or the wet sulfuric acid process (WSA).
Contact process
edit
Main article: Contact process
In the first step, sulfur is burned to produce sulfur dioxide.
S(s) + O2 → SO2
The sulfur dioxide is oxidized to sulfur trioxide by oxygen in the presence of a vanadium(V) oxide catalyst. This reaction is reversible and the formation of the sulfur trioxide is exothermic.
2 SO2 + O2 ⇌ 2 SO3
The sulfur trioxide is absorbed into 97–98% H2SO4 to form oleum (H2S2O7), also known as fuming sulfuric acid or pyrosulphuric acid. The oleum is then diluted with water to form concentrated sulfuric acid.
H2SO4 + SO3 → H2S2O7
H2S2O7 + H2O → 2 H2SO4
Directly dissolving SO3 in water, called the "wet sulfuric acid process", is rarely practiced because the reaction is extremely exothermic, resulting in a hot aerosol of sulfuric acid that requires condensation and separation.
Wet sulfuric acid process
edit
Main article: Wet sulfuric acid process
In the first step, sulfur is burned to produce sulfur dioxide:
S + O2 → SO2 (−297 kJ/mol)
or, alternatively, hydrogen sulfide (H2S) gas is incinerated to SO2 gas:
2 H2S + 3 O2 → 2 H2O + 2 SO2 (−1036 kJ/mol)
The sulfur dioxide then oxidized to sulfur trioxide using oxygen with vanadium(V) oxide as catalyst.
2 SO2 + O2 ⇌ 2 SO3 (−198 kJ/mol) (reaction is reversible)
The sulfur trioxide is hydrated into sulfuric acid H2SO4:
SO3 + H2O → H2SO4(g) (−101 kJ/mol)
The last step is the condensation of the sulfuric acid to liquid 97–98% H2SO4:
H2SO4(g) → H2SO4(l) (−69 kJ/mol)
Other methods
edit
Burning sulfur together with saltpeter (potassium nitrate, KNO3), in the presence of steam, has been used historically. As saltpeter decomposes, it oxidizes the sulfur to SO3, which combines with water to produce sulfuric acid.
Prior to 1900, most sulfuric acid was manufactured by the lead chamber process.[32] As late as 1940, up to 50% of sulfuric acid manufactured in the United States was produced by chamber process plants.
A wide variety of laboratory syntheses are known, and typically begin from sulfur dioxide or an equivalent salt. In the metabisulfite method, hydrochloric acid reacts with metabisulfite to produce sulfur dioxide vapors. The gas is bubbled through nitric acid, which will release brown/red vapors of nitrogen dioxide as the reaction proceeds. The completion of the reaction is indicated by the ceasing of the fumes. This method conveniently does not produce an inseparable mist.[citation needed]
3 SO2 + 2 HNO3 + 2 H2O → 3 H2SO4 + 2 NO
Alternatively, dissolving sulfur dioxide in an aqueous solution of an oxidizing metal salt such as copper(II) or iron(III) chloride:[citation needed]
2 FeCl3 + 2 H2O + SO2 → 2 FeCl2 + H2SO4 + 2 HCl
2 CuCl2 + 2 H2O + SO2 → 2 CuCl + H2SO4 + 2 HCl
Two less well-known laboratory methods of producing sulfuric acid, albeit in dilute form and requiring some extra effort in purification, rely on electrolysis. A solution of copper(II) sulfate can be electrolyzed with a copper cathode and platinum/graphite anode to give spongy copper at cathode and oxygen gas at the anode. The solution of dilute sulfuric acid indicates completion of the reaction when it turns from blue to clear (production of hydrogen at cathode is another sign):[citation needed]
2 CuSO4 + 2 H2O → 2 Cu + 2 H2SO4 + O2
More costly, dangerous, and troublesome is the electrobromine method, which employs a mixture of sulfur, water, and hydrobromic acid as the electrolyte. The sulfur is pushed to bottom of container under the acid solution. Then the copper cathode and platinum/graphite anode are used with the cathode near the surface and the anode is positioned at the bottom of the electrolyte to apply the current. This may take longer and emits toxic bromine/sulfur-bromide vapors, but the reactant acid is recyclable. Overall, only the sulfur and water are converted to sulfuric acid and hydrogen (omitting losses of acid as vapors):[citation needed]
2 HBr → H2 + Br2 (electrolysis of aqueous hydrogen bromide)
Br2 + Br− ↔ Br
−
3
(initial tribromide production, eventually reverses as Br− depletes)
2 S + Br2 → S2Br2 (bromine reacts with sulfur to form disulfur dibromide)
S2Br2 + 8 H2O + 5 Br2 → 2 H2SO4 + 12 HBr (oxidation and hydration of disulfur dibromide)
Can't be bothered to look up how they procure sulphur, oxygen, water, copper sulphate, anhydrous ammonia etc.
ANY MORE REQUESTS?